روش موجک هار برای حل معادلات انتگرال - دیفرانسیل غیر خطی

پایان نامه
  • وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان
  • نویسنده ندا مهرور
  • استاد راهنما سهرابعلی یوسفی
  • تعداد صفحات: ۱۵ صفحه ی اول
  • سال انتشار 1386
چکیده

چکیده ندارد.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش شبه خطی کردن موجک هار برای حل مسائل غیر خطی تراسچ و براتو

در این مقاله یک روش عددی برای حل مسائل غیر خطی تراسچ و براتو ارائه می‌کنیم. در این روش از فر آیند شبه خطی کردن و تابع پایه‌ای موجک هار برای تبدیل مسائل غیر خطی به دستگاه معادلات جبری خطی استفاده خواهیم کرد. چند مثال عددی آورده شده است و نتایج عددی بدست آمده از روش ارائه شده را با نتایج حاصل از روش‌های تحلیلی و عددی موجود در منابع مختلف مقایسه خواهیم کرد. همچنین نتایج بدست آمده را در قالب جداول ...

متن کامل

تقریب خطی برای معادلات دیفرانسیل غیر خطی و مسئله پایداری

در این مقالع بعنوان مثال معادله دیفرانسیل گسترش جمعیت تحت مطالعه و نقاط استثنایی (نقاط حل) این معادله از نقطه نظر پایداری و ناپایداری مورد بحث قرار گرفته است . طی این مثال و مثالی دیگر نشان داده شده که همیشه خطی کردن معادلات دیفرانسیل غیر خطی نتیجه مطلوب را نخواهد داد. بالاخره در قسمت آخر تعریفات ریاضی پایداری از نقطه نظر لاپلاس لیاپولف و پوانکاره و شرط کافی برای اینکه بتوان معادله دیفرنسیل غیر...

متن کامل

روش تجزیه برای حل معادلات انتگرال-دیفرانسیل غیر خطی

در این پایان نامه معادلات انتگرال-دیفرانسیل غیرخطی را با سه روش ماتریس تیلور،تجزیه ی آدومیان وآدومیان اصلاح شده حل می کنیم وباحل مثالی با سه روش مذکور،نتایج نهایی رادرقالب جدول بیان می کنیم.

یک روش جدید برای حل عددی معادلات انتگرال-دیفرانسیل با موجک هار

در این پایان نامه ابتدا مفاهیم مقدماتی پیش نیاز برای موضوع مورد بحث ارائه می شود که عبارتند از معادلات انتگرال خطی فردهلم، معادلات انتگرال خطی ولترا، معادلات انتگرال-دیفرانسیل، موجک هار و روش برویدن. در فصل دوم به حل عددی معادلات انتگرال فردهلم غیر خطی نوع دوم با استفاده از موجک هار می پردازیم.به این صورت که ابتدا تقریب توابع ‎$ f(x) $‎, ‎$ k(x,t) $‎ و ‎$ u(x) $‎ با استفاده از موجک هار محا...

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

متن کامل

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023